Integration of Partially Integrable Equations

نویسنده

  • R. CONTE
چکیده

Most evolution equations are partially integrable and, in order to explicitly integrate all possible cases, there exist several methods of complex analysis, but none is optimal. The theory of Nevanlinna and Wiman-Valiron on the growth of the meromorphic solutions gives predictions and bounds, but it is not constructive and restricted to meromorphic solutions. The Painlevé approach via the a priori singularities of the solutions gives no bounds but it is often (not always) constructive. It seems that an adequate combination of the two methods could yield much more output in terms of explicit (i.e. closed form) analytic solutions. We review this question, mainly taking as an example the chaotic equation of Kuramoto and Sivashinsky νu ′′′ + bu ′′ + µu ′ + u 2 /2 + A = 0, ν = 0, with (ν, b, µ, A) constants.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solutions structure of integrable families of Riccati equations and their applications to the perturbed nonlinear fractional Schrodinger equation

Some preliminaries about the integrable families of Riccati equations and solutions structure of these equations in several cases are presented in this paper, then by using of definitions for fractional derivative we apply the new extended of tanh method to the perturbed nonlinear fractional Schrodinger equation with the kerr law nonlinearity. Finally by using of this method and solutions of Ri...

متن کامل

Partially integrable nonlinear equations with one higher symmetry

In this paper we present a family of second order in time nonlinear partial differential equations, which have only one higher symmetry. These equations are not integrable, but have a solution depending on one arbitrary function.

متن کامل

Exact solutions of the 2D Ginzburg-Landau equation by the first integral method

The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.

متن کامل

Relationships between Darboux Integrability and Limit Cycles for a Class of Able Equations

We consider the class of polynomial differential equation x&= , 2(,)(,)(,)nnmnmPxyPxyPxy++++2(,)(,)(,)nnmnmyQxyQxyQxy++&=++. For where and are homogeneous polynomials of degree i. Inside this class of polynomial differential equation we consider a subclass of Darboux integrable systems. Moreover, under additional conditions we proved such Darboux integrable systems can have at most 1 limit cycle.

متن کامل

Superposition Formulas for Darboux Integrable Exterior Differential Systems

1 Introduction 1 1 Introduction In this paper we present a far-reaching generalization of E. Vessiot's analysis [24], [25] of the Darboux integrable partial differential equations in one dependent and two independent variables. Our approach provides new insights into this classical method, uncovers the fundamental geometric invariants of Dar-boux integrable systems, and provides for systematic,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006